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Executive Summary 

Selecting an effective and cost-efficient sampling strategy in scientific surveys is a major 
concern in the management of living marine resources. This is particularly true when the target 
populations are highly structured over space and time, and the allocation of survey effort and 
resources are subject to logistical limitations and uncertainties. We developed a simulation 
framework to evaluate sampling strategies within the data-limited main Hawaiian Island region 
based on 10 years of in situ ecological fishery-independent surveys. Specifically, we compare 
quantitative precision and bias of the spatiotemporal distribution of reef fish biomass estimates 
among functional levels using three contrasting stratified random survey designs; (1) 
geographically comprehensive (“traditional”), (2) ecologically homogeneous (“zone-based”), 
and (3) ecologically homogeneous but geographically reduced (“zone-triaged”) stratified 
designs.  

We applied a stratified survey strategy simulation to functional reef fish biomass, modeled with 
the observed biogeographical characteristics. The simulation scheme allowed us to incorporate 
varying sampling efforts to analyze the sensitivity of estimated biomass to the different 
strategies. Beyond this specific application, the simulation framework that we develop here will 
be a useful tool for evaluating the efficacy of fishery-independent surveys.  

We found that across all three survey scenarios, the ecologically homogeneous but 
geographically reduced (“zone-triaged”) stratified design outperformed in terms of accuracy 
when sampling efforts were much lower than historical averages (2013, 2016, 2019). However, 
differences between the surveys’ performance became negligible when the scale of sampling 
efforts were matched to historical averages. This result indicates that measuring “fewer, 
regionally representative, ecologically homogeneous strata” (i.e. zone-triaged stratified designs) 
could be an acceptable strategy when survey resources are limited. This study showed that 
ecologically focused, sub-island stratification schemes could mitigate the loss of precision of 
survey estimates due to severe reduction of sampling efforts. However, under “normal”, 
historical allocation of effort and quality standards, this methodological shift would not lead to 
substantial improvement in survey error characteristics. 
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Introduction 

Marine populations exhibit complex spatiotemporal dynamics, presenting various logistical 
challenges in deriving accurate and precise estimates of their management-relevant parameters 
(Katsanevakis et al. 2012; Murphy and Jenkins 2010; Tommasi et al. 2017). Designing and 
implementing effective survey protocols are critical prerequisites for many living marine 
resource (LMR) monitoring programs that are needed to quantify the risk of overexploitation and 
to evaluate the efficacy and precautionary levels of alternate management plans (Murphy and 
Jenkins 2010). Implementing effective and efficient surveys with a solid basis in statistical 
sampling schemes has become a core component of many science-based LMR monitoring 
programs worldwide (Gunderson 1993). 

A common logistical problem of scientific survey design is the balance between the cost and the 
efficacy of the survey design and sampling protocol (Gunderson 1993; Tyre et al. 2003). Low-
cost, reduced sampling survey efforts can lead to reduced precision in the estimate of target 
population size and structure. Expensive but statistically inappropriate survey efforts can lead to 
both over-sampling and potentially correlated metrics. These issues are often difficult to identify 
and avoid on-site as survey practitioners may target multiple populations under various spatial 
scales and sampling efforts. Furthermore, fisheries-independent surveys can be hindered or 
reduced by temporary or permanent reductions in resources or funding (e.g., vessel breakdowns, 
unexpected or unfavorable weather conditions; ICES, 2020; Zimmermann & Enberg, 2017). The 
ongoing COVID-19 pandemic provides a clear example of how severe an unexpected reduction 
can occur to ongoing survey efforts, as scientists and managers are challenged with revised 
planning and quantitative evaluations to minimize information gaps and uncertainties in 
subsequent assessments or management advice (ICES, 2020). There is a need to better 
understand the uncertainties associated with changes to established surveys with standardized 
survey protocols. 

The fishery-independent biomass estimates for many reef fish species in the main Hawaiian 
Islands (MHI) region are available through the stratified random stationary point count (SPC) 
surveys as a part of the NOAA Coral Reef Conservation Program’s National Coral Reef 
Monitoring Program (NCRMP) (Heenan et al. 2017; Towle et al. 2022). Since 2010, the 
NCRMP has focused on collecting geographically comprehensive in situ data and providing 
periodic assessments of coral reef ecosystems in the United States. Most LMR monitoring 
programs throughout the western-central Pacific are limited in their survey resources and often 
lack ecological inferences of spatiotemporal LMR trends (e.g., annual and bi-annual fishery-
independent surveys). Due to the large size of its survey domain and logistical constraints, the 
Pacific NCRMP survey protocol employs a geographically comprehensive but temporally sparse 
sampling scheme (i.e., “wide-but-thin”). While the insufficiency of LMR monitoring data can 
potentially hinder effective management, a variety of alternate methods has been proposed to 
derive unbiased estimates of LMR status across time and space (Oliver et al. 2020). 

Simulation studies are commonly used to quantify and compare the efficacy of alternate 
sampling strategies (e.g., Li et al. 2015; Regular et al. 2020). The NCRMP underwater visual 
census data set presents an ideal opportunity to explore the impacts of alternative survey designs 
on the functional group-level estimates of reef fish biomass at an island scale. Stakeholders 
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involved in existing survey programs are often skeptical of hypothesized changes to existing 
sampling protocols until the potential benefits of alternative designs have been empirically 
demonstrated. To this end, we developed a generalized simulation-based framework to examine 
alternative statistical LMR survey designs at different levels of sampling effort within a data-
poor environment. 

We hypothesized that replacing the existing geographically comprehensive survey (i.e., covering 
all reef areas) with two alternate survey designs that employ “ecologically homogeneous strata” 
and “geographically representative strata” can maintain or improve our ability to quantify reef 
fish biomass and spatial distribution and infer temporal trends (Oliver et al. 2020). Our 
simulation framework follows these steps: 1) reconstruct a spatiotemporally structured biomasses 
of four defined functional groups across the MHI survey domain, 2) sample each functional 
group biomass correlated across space and time under three different randomized survey designs, 
and 3) obtain and compare biomass estimates at various sampling effort levels. With this 
framework, we aimed to balance accuracy, simplicity, generality, and computational feasibility. 
This study contributes to resilience-based management in an era of uncertain support for field 
surveys. 

Methods 

Fishery-independent data 

The most reliable estimates of marine fish biomasses and spatial distributions at broad scales are 
generally derived from fishery-independent surveys. The in situ biomass estimates for 
approximately 300 reef fish taxa in the main Hawaiian Islands (MHI) region were collected 
through the National Coral Reef Monitoring Program (NCRMP) stratified random stationary 
point count (SPC) surveys led by the NOAA Pacific Islands Fisheries Science Center (PIFSC). 
The statistically randomized SPC survey used in this study encompasses 10 years (2010, 2012–
2013, 2015–2016, 2019; NCEI Accession 0162472, 0157591, 0210958, 0157589, 0157590, 
0211063, 0210958) and 1,798 survey locations across 7 islands (Niihau, Kauai, Oahu, Molokai, 
Lani, Maui, and Hawaii). The detailed descriptions of these data sets can be found in Heenan et 
al. (2017), McCoy et al. (2019), and Suarez and Grabowski (2021). Briefly, these fishery-
independent surveys were based on a stratified random sampling design using the paired-diver 
SPC method (Heenan et al. 2017). The stationary diver-based sampling method records fish 
species, size, and abundance in visually estimated paired stationary 15-m diameter survey 
cylinders (353 m2) extending from the seafloor to the surface. These fishery-independent surveys 
have recorded approximately 2 million fishes and provide site-level biomass records across a 
range of fish species and functional groups. Fishes were categorized into four functional groups 
(primary, secondary, planktivores, and herbivores; (Friedlander et al. 2018; McCoy et al. 2019)), 
for subsequent statistical and power analyses. The “primary” group consists of primary 
consumers such as herbivores and detritivores, while the “secondary” group are secondary 
consumers that represent omnivores and benthic invertivores. 
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Figure 1. Study region encompassing the main Hawaiian Islands and seven islands featured in this study. The 
study area ranges from 15 to 100 m in depth, in latitude from 18.9˚ to 22.3,˚ and in longitude from-160.5˚ to -
154.8˚. Bathymetry lines represent 100-m contour lines. Bathymetric data were drawn from ETOPO1 1 arc-
minute global relief model (Amante and Eakins 2009). The inset panel shows the National Coral Reef 
Monitoring Program sampling efforts (number of surveyed sites) between 2010 and 2019. 

Spatiotemporal modeling of functional group biomass 

We developed a statistical model to derive spatiotemporal estimates of four functional group 
biomass (primary, secondary, planktivore, and piscivore) that serves as the putative true survey 
populations within our simulation framework. We applied a mixed-modeling approach (Zuur et 
al. 2009) which incorporates a spatially explicit temporal trend (i.e., local trend) alongside spatial 
(temporally constant) and spatiotemporal (time-varying) components. It imposes correlation 
across space and time in the estimates of functional group biomasses and spatiotemporal 
distributions across the 7 islands within the MHI region. Accounting for spatial autocorrelation 
between spatially referenced observations proximate in both space and time can facilitate 
subsequent survey simulations with sufficient biogeographical accuracy for evaluating the 
efficacy of various sampling strategies. 

Using the R sdmTMB package (Anderson et al. 2022), we fitted a full spatiotemporally explicit 
generalized linear mixed model (GLMM) with a local trend to each size-aggregated functional 
group biomass (piscivore, planktivore, primary, secondary). The sdmTMB package provides a 
flexible mixed modeling framework that incorporates an automatic differentiation platform, 
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which fits models by finding the minimum log likelihood based on the nlminb optimization 
routine (Kristensen et al. 2015). We included both spatial and spatiotemporal components. Depth 
was modeled as a quadratic effect (Barnett et al. 2021), and year was included as a factor. The 
full model incorporating the local trend was fitted with a Tweedie distribution and a log link 
(Tweedie 1984). This setting has been shown to perform well with zero-inflated data (Barnett et 
al. 2021; Tanaka et al. 2018). The full model can be written as: 

𝑦𝑦𝑠𝑠,𝑡𝑡 ∼ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇�𝜇𝜇𝑠𝑠,𝑡𝑡,𝜌𝜌,𝛷𝛷�, 1 < 𝜌𝜌 < 2, 

𝜇𝜇𝑠𝑠,𝑡𝑡 = 𝑒𝑒𝑒𝑒𝑒𝑒�𝛼𝛼𝑡𝑡 + 𝛽𝛽1𝐷𝐷𝑠𝑠,𝑡𝑡 + 𝛽𝛽2𝐷𝐷2
𝑠𝑠,𝑡𝑡 + 𝜔𝜔𝑠𝑠 + 𝜖𝜖𝑠𝑠,𝑡𝑡 + 𝜁𝜁𝑠𝑠𝑡𝑡�, 

𝜔𝜔 ∼ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 �0,�
𝜔𝜔

�, 

𝜖𝜖𝑡𝑡 ∼ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 �0,�
𝜀𝜀

�, 

𝜁𝜁 ∼ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 �0,�
𝜁𝜁

�, 

Equation 1 

 where 𝑦𝑦𝑠𝑠,𝑡𝑡 is functional biomass (g per m2) at location 𝑠𝑠 and time 𝑡𝑡, 𝜇𝜇𝑠𝑠,𝑡𝑡 is the mean functional 
biomass at location s and time t, 𝜌𝜌 is the Tweedie power parameter, and φ is the dispersion 
parameter. The 𝛼𝛼𝑡𝑡 is estimated independently for each year. The 𝛽𝛽1 and 𝛽𝛽2 are two depth 
covariates included as log-transformed depth and log-transformed depth squared. 𝜔𝜔𝑠𝑠 and 𝜖𝜖𝑠𝑠,𝑡𝑡 are 
spatial and spatiotemporal random effects, respectively, derived from Gaussian Markov random 
fields (Cressie and Wikle 2015) with respective covariance matrices ∑ε and ∑ω. The 𝜁𝜁𝑠𝑠𝑡𝑡 are the 
spatially varying coefficients that capture local trends through time (i.e., 2010-2019), also 
derived from Gaussian Markov random fields. Time t (i.e., year) is incorporated after 
multiplying with 𝜁𝜁𝑠𝑠 and centered by its mean value. All random fields incorporate covariance 
matrices constrained by anisotropic Matérn covariance functions with independent scales but 
share the same κ parameters controlling the decay rate of spatial correlation as a function of 
distance (Cressie and Wikle 2015; Thorson 2019). All functional biomass models were fitted 
with the same covariates (year and two depth covariates) (Barnett et al. 2021). Using the R INLA 
package (Arab 2015), the continuous random fields with triangulated mesh were prepared with 
vertices at 500 knots (Fig S2). Conventional diagnostic plots (e.g., quantile-quantile plots; Fig 
S3) and spatial patterns in residuals were examined to analyze model fits. We predicted 
functional biomass at each grid location defined by NOAA Coastal Relief Model vol.10 
bathymetry data (3 arc seconds, ~90m) to develop a smooth surface of functional biomass 
estimates across the MHI region. Spatiotemporal-GLMM outputs were spatially aggregated at 
the resolution of the NOAA CRM vol. 10 bathymetry grid (~8,100 m2), which is the spatial 
resolution used for subsequent survey simulations. 
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Simulation design  

The final steps in the analysis were (1) to conduct realistic simulations of fisheries-independent 
SPC surveys and (2) to evaluate the efficacy of alternate sampling protocols by assessing the 
deviation of stratified estimates of biomass from the true biomass available to the SPC 
survey.  We developed a simple simulation framework using the R SimSurvey package (Regular 
et al. 2020) to run a series of surveys and stratified analyses over the reconstructed functional 
group biomasses that varied in space and time. These modeled biomasses were considered true 
populations for applying three alternative sampling protocols, and the stratified analyses 
provided estimates of total biomass for each functional group.  

The first sampling protocol (hereafter “traditional survey”) simulates the existing 
geographically comprehensive stratified random design as part of NCRMP. The traditional 
survey domain includes all hard-bottomed reef habitat within 1–30 m depth and is stratified into 
three depth zones (shallow [1–6 m], moderate [6–18 m], and deep [18–30 m]), three reef zones 
(forereef, backreef, and lagoon), and designated island sectors. The number of sites in each 
stratum is allocated based on the area of strata and the observed variance of fish biomass. The 
second sampling protocol (hereafter “zone-based”) follows the survey domain defined by 
ecologically homogeneous strata proposed by Oliver et al. (2020). Briefly, these ecologically 
homogeneous strata are based on statistically downscaled ecological data from the historical 
NCRMP Pacific Reef Assessment and Monitoring Program surveys. Oliver et al. (2020) 
developed a statistical framework, which used contiguous clustering was used to identify 
“natural” divisions between observations while maintaining the optimal balance between fine 
spatial resolution and statistical robustness of the identified clusters. The third sampling 
protocol (hereafter “zone-triaged”) also follows the ecologically homogeneous strata proposed 
using methods from Oliver et al. (2020) but mimics a hypothetical resource-constrained situation 
where survey protocols randomly drop ⅓ of total strata at each island (i.e., every stratum from an 
island is assigned a 2/3 probability of being surveyed). 

The sampling sites in each stratum are allocated based on the stratum’s proportional area and the 
variance structure of the observed reef fish populations within the stratum. The allocated number 
of cells is randomly selected in each stratum. The biomass of fish “recorded” at each sampling 
site is calculated by applying binomial sampling of the estimated fish biomass in each sampled 
cell (~8,100 m2) by the proportion of the area covered by the survey area (353 m2 from two 15-m 
diameter survey cylinders) and the simplified detectability defined as 0.5 (i.e., catchability, 
Regular et al. 2020). We tested survey performance using 50 levels of sampling efforts, where 
the simulated sampling effort started at 10 sampling sites per island and increased to 500 
sampling sites in intervals of 10 sites for computational efficiency. The simulated survey efforts 
capture the range of observed survey efforts from past NCRMP SPC survey data (2013, 2016, 
and 2019; Table 1).  
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Table 1. Summary of historical National Coral Reef Monitoring Program sampling efforts (allocated number 
of sites) by islands based on surveys conducted in 2013, 2016, and 2019. High: 75th percentile: Low: 25th 
percentile. 

    High (75th percentile) Median  Low (25th percentile) 
Hawaii 115.5 102 98 
Kauai 71.5 50 44.5 
Lanai 48 46 45.5 
Maui 61 48 46 
Molokai 66 65 52 
Niihau 36.5 28 23.5 
Oahu 105.5 100 98.5 

 We used root-mean-squared error (RMSE) to measure the precision and bias of the biomass 
estimates from each survey (Regular et al. 2020). The combinations of survey settings are based 
on four functional groups, seven islands, ten sampling efforts, and three survey designs. Every 
individual survey setting was simulated ten times, resulting in 420,000 simulations to evaluate 
the overall survey performances. All analyses were performed in the R programming 
environment (ver. 4.0.1.; R Core Team 2021s; <www.r-project.org>). Reproducible R scripts 
and data can be found in https://github.com/krtanaka/ncrmp_power_analysis. Original survey 
data can be found at https://www.fisheries.noaa.gov/inport/item/24447 

Results 

Spatiotemporal dynamics of MHI functional reef fish biomass distributions 

Predictions of the spatially explicit temporal trend from the spatiotemporal model show fine-
scale spatial structures in rates of changes of functional group biomass across the MHI region 
(Fig. 2). Analysis of the predicted localized trends (slope of biomass across years) and the 
median biomass revealed several geographic patterns that are difficult to detect at broader scale 
such as increases in reef fish biomass across all functional groups around Oahu (Fig. 2a) and 
relatively higher predicted biomass in Niihau over 2010-2019 (Fig. 2b). The predicted functional 
group biomass varied from 0.1 to 92.4 g per m2 during 2010-2019 (Fig. 3). It is important to note 
that the distributions of these functional group biomasses extend into regions deeper than are 
surveyed, and findings from these analyses only describe the dynamics of their biomass 
distribution within the MHI NCRMP survey domain. The lowest mean biomass was among the 
planktivore, and the highest was the primary group species (Fig. 3). 

http://www.r-project.org/
https://github.com/krtanaka/ncrmp_power_analysis
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Figure 2. Model predicted spatial and temporal patterns of reef fish biomass among functional levels across 
the main Hawaiian Islands from 2010 to 2019; (a) predicted local trends (slope coefficients; year-1), (b) spatial 
distribution of median predicted biomass (g per m2). Model predictions were originally at 3 arc seconds (~90 
m) but aggregated to 0.1 decimal degrees. 
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Figure 3. The time series of median predicted functional reef fish biomass with 95% confidence intervals 
across the main Hawaiian Islands. 

Simulation testing 

We first provide a summary of results from a single combination of simulation settings. This 
simulation quantified the efficacy of three survey designs (traditional, zone-based, and zone-
triaged) by assessing the deviation of stratified estimates of piscivore biomass around Oahu from 
2010 through 2019 by applying the median historical sampling effort over this period (number of 
sampling sites set at 100; Table 1) (Fig. 4, Fig. 5). All survey designs captured the temporal 
trends in piscivore biomass reasonably well (Fig. 5). Based on the RMSE, the traditional survey 
provided the most accurate biomass estimates (RMSE = 8.4^107). The effect of heterogeneous 
spatial allocation of sampling sites on biomass estimates is clear in the zone-triaged survey 
design, where systematic bias appears to be a problem with stratified biomass estimates that were 
consistently biased low across all years (RMSE = 1.6×108). Traditional (RMSE = 8.4×107) and 
zone-based (RMSE = 9.7×107) survey designs, in contrast, exhibited relatively smaller biases.
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Figure 4. Three survey designs in Oahu. (a) Number of strata under each sampling design, (b) Spatial 
allocations of sampling sites under the median sampling efforts (n = 100: see Table 1). The color legend in 
panel (b) represents number of sites per strata. 
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Figure 5. Example results of 100 simulated survey efforts on piscivore reef fish biomass (2010–2019) under 
three survey designs from Oahu. Thick solid lines in panel b represent true biomass trends.  

To compare simulation results, we standardized RMSE across 7 islands and 4 functional reef fish 
groups by calculating z-scores (i.e., each island * functional group result has equal means and 
SDs but a different range). The full results with 4.2×10^5 simulations show clear declines in 
standardized RMSE in biomass estimates at higher sampling efforts (Fig. 6). Increasing the 
sampling efforts above 100 sites per island results in negligible RMSE differences between the 
three survey designs. Further increases in sampling efforts result in diminishing improvement in 
survey performance. The zone-triaged design outperformed the other survey designs at lower 
sampling efforts than historical averages (e.g., 2013, 2016, 2019; Fig. 6). This result indicates 
that measuring fewer ecologically homogeneous strata is more beneficial than measuring all 
strata when survey resources are limited (e.g., days allocated for each island). 
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Figure 6. Changes in the standardized precision and accuracy (root-mean-squared error; RMSE) from an 
array of surveys with different island-level sampling protocols (traditional, zone-based, and zone-triaged). 
The x-axis represents the hypothetical stratified sampling efforts that varied from 10 to 500 sites per year. 
Note that the x-axis has been log10 transformed.  

Comparison of individual simulation results (7 islands * 4 functional groups) did not identify any 
consistently “winning” survey designs as survey performance varied among islands and 
functional groups (Fig. 7, Fig. 8). Surveys from Lanai showed the best overall performance 
(mean RMSE 2.06×107 ± SD2.38×107), while surveys targeting piscovores returned the lowest 
RMSE overall (mean RMSE 3.03×107± SD 2.88×107). Among the survey designs targeted 
toward piscivores, the zone-triaged survey design outperformed the other designs in Hawaii, 



12 

 

Kauai, Maui, Niihau, and Oahu. Traditional and zone-based survey designs showed the best 
performance in Lanai and Molokai, respectively.
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Figure 7. Divergent boxplots of the precision and accuracy (root-mean-squared error; RMSE) of stratified 
four functional group biomass estimates under three alternative sampling protocols and two different 
sampling efforts (2010–2019).
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Figure 8.  Changes in the precision and accuracy (root-mean-squared error; RMSE) standardized over an 
array of survey designs across seven islands and four functional groups. Note the x-axis has been log10 
transformed. Vertical lines represent actual levels of historical sampling, ranked from “low” to “median” to 
“high.”  
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Discussion 
The NOAA's National Coral Reef Monitoring Program (NCRMP) survey maintains long-term 
monitoring efforts with a geographically comprehensive sampling scheme for detecting temporal 
and spatial changes in living marine resource (LMR) status from either natural or anthropogenic 
causes (Heenan et al. 2017). We developed a simulation approach using historic NCRMP data to 
evaluate the precision and accuracy of multiple fishery-independent survey designs to meet 
NCRMP objectives. We compared the performances of the sampling designs with different 
stratification schemes for the spatiotemporal distribution of reef fish biomass among functional 
groups, explicitly testing traditional NCRMP scenarios against more ecologically homogeneous 
survey sectors. Though somewhat narrow in scope, the mixed-effects spatiotemporal modeling 
of reef functional populations incorporated sufficient biogeographical realities to evaluate the 
efficacy of these distinct sampling strategies. 

Overall, our results suggest that, assuming selected zones are broadly representative of 
management needs, targeting fewer ecologically homogeneous and meaningful zones (zone-
triaged design) can be a viable alternative when survey resources are scarce (e.g., reduced 
number of days allocated for sampling each island). At low levels of sampling, zone-triaged 
methods substantially out-performed the traditional sector stratification (Fig. 6). Among the 
survey designs targeted at piscivores (the functional group with the lowest RMSE overall), the 
zone-triaged survey design emerged as the best performing survey strategy in 5 out of the 7 
islands (Fig. 7, Fig. 8). However, the relative strength of either the zone-triaged or zone-based 
designs tends to disappear with greater sampling effort, and the performances of the different 
designs are hard to distinguish when sampling efforts reach the levels traditionally required to 
meet NCRMP historical survey standards (Fig. 6; Table 1). 

While the objective of the NCRMP survey is to apply a “wide-but-thin” strategy to cover 
shallow benthic and reef fish habitats in the most geographically comprehensive way possible, 
the enormous scale of NCRMP’s survey domain provides many logistical challenges to the 
maintenance of adequate, random, and well-balanced representation across space, time, and 
stratified variables within a sector. For example, this “wide-but-thin” survey strategy requires 
practitioners to cover a relatively large number of strata (i.e., reporting sectors), and is vulnerable 
to unexpected effort reductions due to funding shortfalls, vessel unavailability, weather, and 
other complications that require immediate or strategic revisions. However, many survey 
practitioners and resource managers are skeptical of hypothesized changes to existing survey 
designs until the potential benefits of alternative designs have been empirically demonstrated 
through a simulation from existing data. Our results imply that 1) ecological inference from the 
actual survey can be potentially improved by altering the survey designs and 2) valuable survey 
power can be potentially maintained by cutting back on the number of strata. Both of these 
findings may improve the relevance of NCRMP data products and support resilience-based 
management in an era of uncertain field access. In other words, in times of limited opportunities 
for survey effort, adopting a zone-triaged design appears to provide a better estimate than 
traditional methods. However, at historic levels of sampling, the distinctions among designs are 
small enough that it would be hard to justify a redesign around the zone-triaged strategy. 

Our study demonstrates the benefit of evaluating alternate stratification schemes for complex 
surveys with multiple objectives. In theory, survey practitioners are interested in designing a 
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survey that can effectively address multiple objectives such as describing spatiotemporal 
dynamics of wildlife populations, predicting abundances or impact assessment at unsampled 
locations, or accurately estimating autocorrelation model parameters (Bijleveld et al., 2012). In 
reality, each objective can have a different optimal survey design and sampling protocols, as no 
single design would fulfill all criteria. Any successful design must reasonably compromise 
among these objectives. Fisheries-independent LMR surveys often incorporate multiple sampling 
schemes, and marine populations often show structured spatiotemporal dynamics (Regular et al., 
2020). A single survey design does not easily capture these complex and dynamic features, 
making it difficult to determine optimal sampling and subsampling schemes (Bijleveld et al. 
2012). In such situations, it is common for practitioners to resort to simulations to identify a 
survey design that minimizes the number of sampling units and maximizes the accuracy of the 
estimates (Cao et al. 2017; Li et al. 2015; Regular et al. 2020).  

Statistical power analyses that can provide quantitative comparisons of alternate survey 
strategies and performances are critical in designing effective LMR monitoring programs. For a 
given survey, the ability to accurately detect ecological trends depends on careful planning and 
well-articulated and realistic objectives (Nichols & Williams, 2006; Yoccoz et al., 2001). Ideally, 
survey practitioners should routinely conduct benchmark survey evaluations to ensure reasonable 
monitoring objectives and evaluate trade-offs in sampling effort (Field et al. 2005; Rhodes et al. 
2006). Comparing multiple survey designs can provide an opportunity to evaluate the 
prioritization of existing monitoring tasks by exploring alternative sampling protocols for 
potential gains in survey efficiencies. For example, survey practitioners can develop 
comprehensive simulation studies on cost-benefit analysis by incorporating the various 
subcomponents inherent in survey design and metric calculations (e.g., minimum and maximum 
survey effort reduction related to reducing the number of biological samples, days at sea, survey 
areas, or survey frequency). The simulated impact of certain changes in survey protocols can be 
used to assess total survey uncertainty and provide insight into the appropriate weighting in 
subsequent likelihood-based assessments of survey products (e.g., spatial availability, density 
dependence, diver effects, timing, and environmental conditions). Future power analysis 
platforms should incorporate environmental data in model-based LMR abundance estimation and 
include functions to evaluate multispecies/multi-objective trade-offs. Our findings contribute to 
existing NCRMP survey efforts and provide an opportunity to develop quantitative applications 
to determine the impacts of different monitoring strategies in terms of inputs (efforts) and 
outputs (accuracy) that can be used for similar scientific survey evaluation frameworks.  



17 

 

Acknowledgments 

The authors would like to acknowledge funding from NOAA’s Coral Reef Conservation 
Program, and the useful contributions of Hannah Barkley, Tye Kindinger, and Courtney Couch. 

Literature Cited 

Amante C,  Eakins BW. 2009. ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data 
Sources and Analysis. NOAA Technical Memorandum NESDIS NGDC-24, National 
Geophysial Data Center, Marine Geology and Geophysics Division, Boulder, CO, USA. 19 
pp.   

Anderson SC, Ward E J, English PA,  Barnett LAK. 2022. sdmTMB : an R package for fast , 
flexible , and user-friendly generalized linear mixed effects models with spatial and 
spatiotemporal random fields. BioRxiv. 1–17. 

Arab A. 2015. Spatial and spatio-temporal models for modeling epidemiological data with 
excess zeros. Int J Environ Res Public Health. 12(9):10536–10548. 
https://doi.org/10.3390/ijerph120910536 

Barnett LAK, Ward EJ.,  Anderson SC. 2021. Improving estimates of species distribution change 
by incorporating local trends. Ecography. 44(3): 427–439. 
https://doi.org/10.1111/ecog.05176 

Bijleveld AI, van Gils JA, van der Meer J, Dekinga A, Kraan C, van der Veer HW,  Piersma T. 
2012. Designing a benthic monitoring programme with multiple conflicting objectives. 
Methods Ecol Evol. 3(3):526–536. 

Cao J, Thorson JT, Richards RA,  Chen Y. 2017. Spatio-temporal index standardization 
improves the stock assessment of northern shrimp in the Gulf of Maine. CanJ Fish Aquat 
Sci. 74(11):1781–1793. https://doi.org/10.1139/cjfas-2016-0137 

Cressie N, Wikle CK. 2015. Statistics for spatio-temporal data. Hoboken, NJ: John Wiley & 
Sons. 

Friedlander AM, Donovan MK, Stamoulis KA, Williams ID, Brown EK, Conklin EJ, DeMartini 
EE, Rodgers KS, Sparks RT,  Walsh WJ. 2018. Human-induced gradients of reef fish 
declines in the Hawaiian Archipelago viewed through the lens of traditional management 
boundaries. Aquat Conserv Mar FreshwEcosyst.28(1):146–157. 
https://doi.org/10.1002/aqc.2832 

Gunderson DR. 1993. Surveys of fisheries resources. New York, NY: John Wiley & Sons. 

Heenan A, Williams ID, Acoba T, DesRochers A, Kosaki RK, Kanemura T, Nadon MO,  
Brainard RE. 2017. Data Descriptor: Long-term monitoring of coral reef fish assemblages 
in the Western central pacific. Sci Data. 4:1–13. https://doi.org/10.1038/sdata.2017.176 

International Council for the Exploration of the Sea (ICES). (2020). ICES Workshop on 



18 

 

unavoidable survey effort reduction (WKUSER). ICES Sci Rep. 2(72):72. 

Katsanevakis S, Weber A, Pipitone C, Leopold M, Cronin M, Scheidat M, Doyle TK, 
Buhl‑Mortensen L, Buhl-Mortensen P,  Anna GD. 2012. Monitoring marine populations 
and communities: methods dealing with imperfect detectability. Aquat Biol. 16(1):31–52. 

Kristensen, K., Nielsen, A., Berg, C. W., Skaug, H., & Bell, B. (2015). TMB: automatic 
differentiation and Laplace approximation. ArXiv Preprint ArXiv:1509.00660. 

Li B, Cao J, Chang, J, Wilson C, and Chen Y. 2015. Evaluation of Effectiveness of Fixed-Station 
Sampling for Monitoring American Lobster Settlement. N Am J Fish Manag. 35,: 942–957. 
https://doi.org/10.1080/02755947.2015.1074961 

McCoy K, Asher J, Ayotte P, Gray A, Kindinger T,  Williams I. 2019. Pacific Reef Assessment 
and Monitoring Program Data Report - Ecological monitoring 2019 - Reef fishes and 
benthic habitats of the main Hawaiian Islands: PIFSC data report DR-19-039. 
https://doi.org/10.25923/he4m-6n68 

Murphy HM,  Jenkins G P. 2010. Observational methods used in marine spatial monitoring of 
fishes and associated habitats: a review. MarFreshwRes. 61(2):236–252. 

Nichols JD, Williams BK. 2006. Monitoring for conservation. Trends EcolEvol. 21(12): 668–
673. 

Oliver TA, Barkley H, Couch C, Williams I, Kindinger T. 2020. Downscaling Ecological Trends 
from the Spatially Randomized Datasets of the National Coral Reef Monitoring Program. 
July. https://doi.org/10.25923/2fef-8r42 

R Core Team. 2021. R: A language and environment for statistical computing. R Foundation for 
Statistical Computing. https://www.r-project.org/ 

Regular PM, Robertson GJ, Lewis KP, Babyn J, Healey B,  Mowbray F. 2020. SimSurvey: An R 
package for comparing the design and analysis of surveys by simulating spatially-correlated 
populations. PLoS ONE, 15(5), 1–28. https://doi.org/10.1371/journal.pone.0232822 

Suarez B,  Grabowski TB. 2021. Estimating detection and occupancy coefficients for the Pacific 
Islands coral reef fish species. Hawaii Cooperative Studies Unit Technical Report. USGS 
Publications Warehouse. http://pubs.er.usgs.gov/publication/70229376 

Tanaka KR, Chang J-H, Xue Y, Li Z, Jacobson L,  Chen Y. 2018. Mesoscale climatic impacts on 
the distribution of Homarus americanus in the US inshore Gulf of Maine. Can J Fish Aquat 
Sci..18(July):1–58. 

Thorson JT. 2019. Guidance for decisions using the Vector Autoregressive Spatio-Temporal 
(VAST) package in stock, ecosystem, habitat and climate assessments. Fish Res. 210:143–
161. https://doi.org/10.1016/j.fishres.2018.10.013 

Tommasi D, Stock C, Hobday A, Methot R, Kaplan I, Eveson P, Holsman K, Miller T, Gaichas 



19 

 

S, Gehlen M, et al. 2017. Managing living marine resources in a dynamic environment: the 
role of seasonal to decadal climate forecasts. Prog Ocean.152:15–49. 
https://doi.org/10.1016/j.pocean.2016.12.011 

Towle EK, Donovan EC, Kelsey H, Allen ME, Barkley H, Blondeau J, Brainard R E, Carew A, 
Couch CS, Dillard MK. et al. 2022. A National Status Report on United States Coral Reefs 
Based on 2012–2018 Dat From National Oceanic and Atmospheric Administration’s 
National Coral Reef Monitoring Program. Front Mar Sci. 8(February). 
https://doi.org/10.3389/fmars.2021.812216 

Tweedie MCK. 1984. An index which distinguishes between some important exponential 
families. Statistics: Applications and New Directions. In J. K. Ghosh & J. Roy (Eds.), 
Proceedings of the Indian Statistical Institute Golden Jubilee International Conference (pp. 
579–604). Indian Statistical Institute. 

Tyre AJ, Tenhumberg B, Field SA, Niejalke D, Parris K,  Possingham HP. 2003. Improving 
precision and reducing bias in biological surveys: estimating false‐negative error rates. Ecol 
Appl. 13(6):1790–1801. 

Yoccoz NG, Nichols JD,  Boulinier T. 2001. Monitoring of biological diversity in space and 
time. Trends Ecol Evol. 16(8): 446–453. 

Zimmermann F,  Enberg K. 2017. Can less be more? Effects of reduced frequency of surveys 
and stock assessments. ICES J MarSci. 74(1):56–68. 

Zuur AF, Ieno EN, Walker NJ, Saveliev AA,  Smith GM. 2009. Mixed Effects Models and 
Extension in Ecology with R (M. Gail, K. Krickeberg, J. Samet, A. Tsiatis, & W. Wong 
(eds.)). Springer Science & Business Media. 

  



20 

 

Supplemental Figures 

 

Figure S 1. Proportion of commonly detected species in functional fish biomass survey data between 2010 and 
2019. Only species with proportion larger than 1% are included. Data were drawn from the National Coral 
Reef Monitoring Program (www.coris.noaa.gov/monitoring/). 
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Figure S 2. Triangulated mesh covering the main Hawaiian Islands region prepared with vertices at 500 
knots using the R INLA package. Polygons with blue points represent spatial domains considered for spatial 
autocorrelations in the spatiotemporal generalized linear mixed model calibration process. Polygons with red 
dots represent land masses and were not included in the spatial autocorrelations in the spatiotemporal 
generalized linear mixed model calibration process. 
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Figure S 3. Quantile–quantile plots of the deviance residuals of the spatiotemporal models fitting four 
National Coral Reef Monitoring Program reef fish functional group biomass data using Tweedie error 
distribution. secondary: secondary consumers (omnivores and invertivores) primary: primary consumers 
(herbivores). 
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